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Abstract. We consider the problem of Brownian motion (1 - D) with an absorbing barrier. 
The approach is the first-passage-time theory recently formulated by us. Explicit results for 
the position, velocity distribution function are obtained in a hiyh-friction approximation 
which indicate the usefulness of this approach in determining approximate solutions. An 
improved approximation, which retains the initial velocity dependence, is then considered, 
and results obtained which contain much of the qualitative behaviour we would expect to 
find in the exact solution. Some consequences of the initial velocity dependence in a 
calculation of the number density are briefly examined. 

1. Introduction 

The determination of the full position, velocity distribution function for a Brownian 
particle moving in an environment containing an absorbing barrier has been cited by 
Wang and Uhlenbeck (1946) as an open problem in the theory of Brownian motion. 
More recently, Bartlett (1966, 1978) has noted that this situation has remained 
unchanged. In addition to a considerable intrinsic interest, this problem has application 
to a number of topical problems, e.g. in the formulation of improved theories of 
nucleation kinetics (Mou and Lovett 1979) and chemical reaction dynamics (Northrup 
and Hynes 1978). An orthodox approach to this problem would be based on the 
Fokker-Planck equation (FPE) with the constraint imposed by the boundary. This, 
however, presents the difficulty that the boundary condition is specified only for 
emergent particles, i.e. only for half of the velocity range. We have recently formulated 
the absorbing-boundary problem in terms of integral equations (Harris 1980), which 
allows the difficulties associated with the FPE to be avoided. 

There are two distinct approaches that our integral equation method is based on. 
These are closely related in spirit but quite different in detail. The most physical of 
these is based on the distribution function for first passages to the boundary; we will 
consider this approach exclusively in what follows. The other approach is based on the 
distribution function for first turning points (FTP) in the inaccessible part of the physical 
space. Although less physical, the FTP approach has the advantage that the resulting 
equation is of the Wiener-Hopf type and thus can be explicitly solved, in principle, by 
standard methods. Eecause the technical details involved in obtaining an exact solution 
are quite complicated, this objective has yet to be realised, and there is still a certain 
value in considering approximate solutions. Approximations can provide qualitative 
information and may also prove useful in particular applications, and it is in this regard 
that the first-passage approach appears to offer certain advantages. 
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In § 2 we briefly describe the first-passage formulation. In § 3 we consider the 
high-friction approximation (HFA), which we used earlier (Harris 1980) in the context 
of the FTP formulation, and obtain the position, velocity distribution function (equation 
( 5 ) ) .  This result generalises the diffusion theory result for the position distribution 
function which can be easily found by the method of images. The structure of our 
approximate result is in agreement with the intuitive expectation (see also the remark 
by Bartlett (1966, p 168)) that the image ‘technique’ does not apply in the full 
one-particle phase space. Interestingly enough, the result found here is not identical to 
that found using the HFA in the RP theory except at long times. This is not surprising, 
since it is well known that a given approximation may lead to different results when used 
in distinct exact  theoretical frameworks, e.g. differing results for the equation of state 
may be found from a given approximation depending on whether the compressibility 
equation or virial equation is used. 

The most obvious shortcoming of the HFA is that the initial velocity dependence is 
neglected. In § 4 we remedy this defect by considering an improved approximation 
which includes this dependence in a fairly realistic manner, and again calculate the full 
position, velocity distribution function using the first-passage approach. We then 
briefly examine some of the consequences of the dependence on the initial data which 
our results contain. 

2. First-passage formulation 

In this section we review the first-passage-time formulation for the problem of 
one-dimensional Brownian motion with an absorbing boundary. We will denote the 
Brownian particle position, velocity by x =q,  U ,  the initial data by x o = q o ,  u0,  and 
consider the case q o > O  with the boundary at the origin. F ( x ,  t ;  x o )  will denote the 
distribution function which describes the motion in the infinite space (i.e. in the absence 
of any boundary effects), andf(x, t ;  x o )  the distribution function for the case of interest 
with an absorbing barrier at q = 0. We can determine f from F by uniquely subtracting 
from the latter the contribution of all those paths which begin at x o  at t = 0, cross the 
origin at any t’ < t, and then somehow arrive at x at time t. Since many of these paths will 
cross the origin several times, care must be taken to count these multiple-crossing paths 
only once. Let f’(0, v, t ;  x o )  be the distribution function for first crossing of the origin?. 
Then, from the Markoff property of Brownian motion in the full x space and the 
definitions off,  f’ and F, the following relationship holds: 

0 

f ( x ,  t ;  x0) = F ( x ,  t ;  x o )  -jr dt’ do’ Io’ l f (0 ,  U ’ ,  t’; x o ) F ( x ,  t - t’; 0 ,  U’). (1) 
0 -m 

We also have 

f’(0, 0, t ;  xo) 

=F(O, o , r ; x 0 ) - I : d f ’  /-;d~’ Iu’lf(0,  U ,  t ‘ ; x o )  

x F(0,  e,  t - t ’ ;  0 ,  U ’ ) ,  U < O  (2) 
= 0 ,  U > 0. 

f Note, the event being described is the first crossing event, which occurs with U < 0 for qo > 0, and not the first 
crossing with velocity U ,  despite earlier crossings with L.” # U. 
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In our earlier work (Harris 1980) we have shown that, for q > 0, f as determined from 
equation ( 1 )  is equivalent to the solution of the FPE subject to the absorbing-boundary 
condition that the solution vanishes at q = 0 for U > 0. 

The presence of the lufl term in the above equations requires comment: what must 
be equated are probabilities, which require each distribution function to be multiplied 
by an element of phase volume prior to the integration. The element dq’ du’ about the 
point 0, v ’  has been replaced by Idq’ldt’l dt’ dv’ = Iu’I du’ dt’, and then all contributions 
obtained by integrating as shown, with the v integration restricted to the incoming 
range. Substitution of q = 0 into equation ( 1 )  reproduces equation (2) for v < 0; the 
discontinuity at q, U = 0 is forced here by the second part of equation (2) .  

The Laplace .ramform of equation ( 2 )  is a Fredholm equation of the second kind, 
having an extremely complicated kernel, and as a result is not promising from the point 
of view of leading to an exact solution. However, as we demonstrate in the following 
section, this equation does offer some advantages in generating approximate solutions. 

3. High-friction approximation 

For very large friction coefficient (or at long times) we have F ( x ,  t ;  xo)+,. 
F”(v)n(q,  t ;  qo), where F” is the Maxwellian distribution and n is the solution to the 
diffusion equation. We have used this approximation earlier (Harris 1980) in the FTP 
formulation to find f, which requires the full Wiener-Hopf ‘machinery’ without the 
benefit of any apparent simplifications. In the present context the solution can be found 
with considerably less effort, which indicates the potential usefulness of equation ( 2 )  in 
generating good working approximate solutions. 

The simplifying feature of the HFA (described above) in the context of equations ( 1 )  
and (2) is that the f’ and F terms are no longer coupled in the velocity integration 
variable. Thus, if we multiply equation ( 2 )  by / V I  and integrate over --M < v < 0, we find 
(after first Laplace transforming) 

where A = ( k T / 2 m ~ ) ” ~ ,  s is the Laplace variable, and we have suppressed the q = 0 in 
the argument off’. Substituting this back into the transform of equation (2) allows us to 
directly ‘solve’ that equation, with the result 

Either of the preceding two equations with equation ( 1 )  gives 

where the identity n (4, s ; 0)n  (0 ,  s ; qo) = (4Ds)-”’n (q,  s ; -qo) has been used in writing 
the term following the minus sign. 

The above result has the same general structure as our earlier result based on the =P 
formulation, and at long times (small s)  or high friction (small D )  goes over into an 
obvious generalisation of the diffusion equation result. (Note, at short times the 
diffusion equation boundary condition n (0, t ;  qo) = 0 is not satisfied for n = du f as 
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determined by equation ( 5 ) . )  For use in applications, equation ( 5 )  offers an advantage 
over our previous result in that it is easily inverted. Thus we see that, from the point of 
view of providing approximate solutions, equation ( 2 )  offers decided advantages over 
the ETP formulation. 

4. Superposition approximation 

Our main objective in this section is to generalise the HFA and assess in a qualitative way 
the effects arising from the dependence of f  on the full initial data. One way of doing 
this is to replace F by a time-weighted superposition of distribution functions which 
give both the correct initial and long-time behaviour. A choice which satisfies the above 
criteria is 

F(x,  t ; ~ , ) = [ e - ~ ’ ~ S ( u - u ~ ) + ( l - e - ‘ ’ ‘ ) F ” ( v ) l n ( q ,  t ;  401, (6) 

which is exact at t = 0 and as t -+ a, and reduces to the HFA for 7 Kl-’ and large 5 with 5 
the friction coefficient. The coordinate dependence in the above approximation has 
been chosen for technical reasons to avoid the problems of dealing with a delta function, 
which would be preferable, in the first term. Despite some shortcomings at small times, 
the above approximation still provides a fairly realistic approximation to F, and has the 
virtue of allowing an analytic solution for f to be found which contains a significant 
amount of structure and is a marked improvement over the HFA result, equation ( 5 ) .  

With only minor modifications, the procedure of the preceding section can be 
followed here. Substituting equation (6) into equation ( 2 ) ,  multiplying by 1 0 1 ,  and 
integrating over --CO < U < 0 leads to a generalisation of equation (3): 

Mere we have used cr = s + T- ’ ,  H ( y )  is the standard Heaviside function, and the 
dependence of d on both qo and uo is indicated. The quantity $(a, 6) is defined as 

and, although the integral is not given explicitly in any of the standard tables, it can be 
written in terms of standard tabulated functions. We evaluate 4 in the Appendix, and 
consider It as known in what follows. Substituting equations (6) and (7) into equations 
(2) then determines f’: 

In the limit T + 0 the above result reduces to the corresponding HFA result, equation (4). 
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Substituting for f' in equation (1) then leads to the desired result: 

f ( x ,  s; x o )  = F ( x ,  s; xo)-H(-u)n(q ,  a ;  O)Iul[F(O, U, s; x o )  

- ~ ( s ,  xo)F"(o)(n (0 ,  s ; 0 )  - n (0, U ;  0))][1+ Iu 1(40a)-"~]- ' 
- - l (s ,  xo)F"(v)(n(o,  s ;  O)-n(O, a ;  0) ) .  (10) 

The above result is quite complex, and we will limit ourselves here to some 
comments on those qualitative features which distinguish it from the HFA result, 
equation ( 5 ) .  The most significant difference is due to the presence of the Heaviside 
function, which indicates a discontinuity at u = 0. This is the same behaviour we would 
expect to find in the exact solution. The physical basis for this is the removal of particles 
at the boundary, an affect which is most pronounced near the boundary. At short and 
intermediate times a non-trivial velocity dependence is apparent; the initial velocity 
dependence persists for these same times and also contains discontinuities. An 
interesting aspect of the initial velocity dependence is how this affects the number 
density, which we must now define as 

with f ( u J  the initial velocity distribution function. The diffusion equation result, nD, 
should correspond to the choice f ( v o )  =F"(uo). For comparison we also consider n*, 
corresponding to f ( u o )  = 2H(*u)F"(uo), for which we find 

n*(q ,s ;qd=n(q ,s ;qO)  

where $(a, b )  = b'I24(a,  b ) [ l  +b"*(n(O, s ;  0 ) - n ( 0 ,  a ;  0))4(a,  b)]-'. 
We see that nD = $(n+ + n -) will differ in detail from both n + or n -  except in the limit 

as each becomes zero. Although we do not think that the present results, based on the 
simple approximation of equation (61, warrant quantitative comparisons, we do think 
that they suggest that improvements to the diffusion equation theory for the absorbing- 
boundary problem are well motivated. More rigorous work in this direction is currently 
in progress. 
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Appendix 

We wish to evaluate 
0 e-bu2 1 "  e-cY2 

J ( a , b ) = (  du / u l r = 7 \  +aluI a dyy-, l + y  
-- m 

with c = b /a2 .  
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This integral does not appear in the standard tables; a change of variable allows us to 
write the integral in terms of the Laplace transform of (1 + tl”)-’, which is also not given 
in the standard tables for these transforms. Since 

1/2  e-cY2 

l + Y  
a 2 9  =(;) -Iom dy-, 

we have (Abramowitz and Stegun 1965, p 302) 

which can be written in terms of the error function for complex argument, W ( z ) ,  as 

Both W ( z )  and Ei(z) are standard tabulated functions, hence 4 is determined. Despite 
appearances, 9 is always real, since w(c’”) -e-‘ is always pure imaginary. 
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